A phase-field model with convection: sharp-interface asymptotics
نویسندگان
چکیده
منابع مشابه
A phase-field model with convection: sharp-interface asymptotics
We have previously developed a phase-field model of solidification that includes convection in the melt [Physica D 135 (2000) 175]. This model represents the two phases as viscous liquids, where the putative solid phase has a viscosity much larger than the liquid phase. The object of this paper is to examine in detail a simplified version of the governing equations for this phase-field model in...
متن کاملSharp-interface projection of a fluctuating phase-field model.
We present a derivation of the sharp-interface limit of a generic fluctuating phase-field model for solidification. As a main result, we obtain a sharp-interface projection which presents noise terms in both the diffusion equation and in the moving boundary conditions. The presented procedure does not rely on the fluctuation-dissipation theorem, and can therefore be applied to account for both ...
متن کاملSharp Interface Limit of a Homogenized Phase Field Model for Phase Transitions in Porous Media
A homogenized phase field model for phase transitions in porous media is considered. By making use of the method of formal asymptotic expansion with respect to the interface thickness, a sharp interface limit problem is derived. This limit problem turns out to be similar to the classical Stefan problem with surface tension and kinetic undercooling.
متن کاملA phase-field model of solidification with convection
We develop a phase-field model for the solidification of a pure material that includes convection in the liquid phase. The model permits the interface to have an anisotropic surface energy, and allows a quasi-incompressible thermodynamic description in which the densities in the solid and liquid phases may each be uniform. The solid phase is modeled as an extremely viscous liquid, and the forma...
متن کاملSharp interface limit of a phase-field model of crystal grains.
We analyze a two-dimensional phase field model designed to describe the dynamics of crystalline grains. The phenomenological free energy is a functional of two order parameters. The first one reflects the orientational order, while the second reflects the predominantally local orientation of the crystal. We consider the gradient flow of this free energy. Solutions can be interpreted as ensemble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physica D: Nonlinear Phenomena
سال: 2001
ISSN: 0167-2789
DOI: 10.1016/s0167-2789(01)00229-9